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Synchronization of hyperchaotic systems with delayed bidirectional coupling
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Synchronization of three bidirectionally coupled hyperchaotic systems is studied, using the lkeda model as
the hyperchaotic unit. The whole system is given by three delay-differential equations with two distinct time
lags. Sufficient condition for the global stability of the manifold of exact synchronization is found analytically.
Local stability of the synchronization manifold is studied by numerical computation of the transverse
Lyapunov exponent and statistical properties of the orbits.
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I. INTRODUCTION with delayed coupling have been recently analyZédi.
Synchronization of two instantaneously coupled time-

Synchronization of chaotic systems is most often studiedlelayed hyperchaotic systems in a master-slave configuration
for systems with relatively low dimensional chaotic attractor,has been studied in Refl2]. Later, Shahverdiewt al.
for example using the models of Rossler or Loréaz over-  [13,14 applied the same methods to the same system but
view and an extensive list of references can be found in Retith the delayed coupling, and studied lag and anticipating
[1]). It is of considerable interest to study the synchroniza-Synchronization. We are not aware of any study of the hy-
tion between hyperchaotic systems, i.e., the systems with Bérchaotic systems with bidirectional delayed coupling.
chaotic attractor, such that there are at least two positive Ve shall study the synchronization of three identical
Lyapunov exponents for the restriction of the system on thékeda systems W'.th bld_lrectmnal difiusive coupllmg. As is
attractor. Examples of such systems, for which the problen){ve” knoyvn, the d|menS|o.n of the attrgctor ofa S'”Q'e lkeda
of synchronization has been analyzed, are given by elecystem, x(t)=—x(t)+ usinx(t—m)], increases with the
tronic circuits and networks of such elemefiisr example, time lag7;. For a sufficiently larger; and . the system is
Refs.[2,3]). Another class of hyperchaotic systems, whichlYPerchaotic. In fact, the number of positive Lyapunov ex-
will be considered here, is provided by the semiflows generponents Incréases W'ﬂ.‘h’ bUt. the size of the exponents de-
ated by delay-differential equationd®DES). As is well creases, so that the dllmenspn of the attractor saturate;._ The
known, a simple nonlinear scalar DDE with a single ﬁxedcharacter of chaos, in partlc_ular the number .Of positive
) . ] o : Lyapunov exponents and their values, for a single lkeda
time lag 7, x(t) =f(x(t),x(t— 7)), gives an infinite dimen-  aquation has been thoroughly studig7,15. An example
sional dynamical system on the phase sp@e 7,0) of  of the attractor, fop =3 andr, =30, with at least two posi-

continuous functions on the intervat-(r,0) [4]. Large 7 tive Lyapunov exponents is illustrated in Fig. 1. The whole
usually implies high-dimensional chaotic attrackbr-7]. system is given by

Besides the theoretical interest, as examples of hypercha-

otic systems, the models given by DDEs often appear in )'(_:_X_+Msin(x_fl)+c(xrz +x72.—2x)
applications, for example in biology, nonlinear optics, or se- ' ' : -1 il v

cure communication. Furthermore, such potentially hyper- .

chaotic units could appear as constitutive elements of com- 1=1.2,3] X4=x1, @

plex systems, and can transmit excitations between them. In N
biological, as well as physical, applications the transmissiovherex; (t)=xi(t— 7).
of excitations is certainly not instantaneous, and the repre- The system of DDE1) has two different time lags, and
sentation by nonlocal and instantaneous interactions should,, which makes its analysis more difficult than for the DDE
be considered only as a very crude approximation. An imwith only one time lag. Furthermore, the two time lags ap-
portant physical example is given by coupled lasers in gear in different ways and play quite different roles. The time
chaotic state with electro-optical or optical feedba8glk9]. lag 71 is an intrinsic “parameter” of each of the units and
Thus, it is of some interest to study the collective behavior ofcontrols the complexity of the dynamics of the uncoupled
systems composed of several chaotic units which are couplethit. On the other hand, the time lag measures the time
by time-delayed interaction, and such that each unit if decouneeded for the transfer of information between the units, and,
pled from the system would have a hyperchaotic attractocontrary tor,, appears linearly in Eqgl). Since we are
due to an intrinsic time lag. predominantly interested in the system with highly chaotic
Delayed coupled regular oscillators have been extensivelynits, it would be natural to assume that> 7,>0.
studied, for example, in relation to realistic neuronal net- We shall first prove that exact synchronizatigp=Xx,
works with synaptic delay$10]. Also, excitable systems =x3 necessary occurs for a sufficiently large couplingnd
for any values of the time lags;= 7,=0; namely, for any
71=7,=0 andc larger thancy(u)=(n—1)/2>0 (and in-
*Email address: buric@phy.bg.ac.yu dependent ofr;,7,) the global attractor of the systefB)
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satisfiesx; =Xx,=X3. In the opposite case,; <7, numerical dimensional attractors corresponding to more general types
evidence indicates that a sufficiently largalso implies the  of synchronization. Naturally, no synchronization occurs for

exact synchronization. Then, we discuss the local attractingufficiently small couplingc.

properties of the synchronization manifatd=x,=x5. To

this end, we compare t_he_ informatior_1 obtained by _numeri(_:al Il. GLOBAL STABILITY OF THE EXACTLY

computation of the statistical correlations along typical orbits SYNCHRONOUS SOLUTIONS

and the transverse Lyapunov exponents. It turns out that, also

for somec<cg,, the manifold of exact synchronization is  In order to study the exact synchronization, we analyze
locally stable but could coexist with other stable low- the dynamics of the following two variables:
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A =X1—Xp, Agg=Xo—X3. 2) b= u/2 is the Lygpunoy functional for E@3) }hat proves .the
_ . o global asymptotic stability of the zero stationary solution of
The dynamics of each of these two functions is given by &g. (3). This means that the dynamics on the attractor of Eq.
scalar DDE of the same form (1) with 7>, is always synchronous provided that
. ) c>Cy.
A=—(1+2c)A—cA™2+o(t)siN(A™/2), € In the complementary case,>r; the corresponding
_ . B . - function V(A,A™,A™2) has several local extrema and noth-
VXTre AAT:_AAle'A,[_l_AlvAz(th_Zl)’At_z_Al'IZ(tthTZt) or 4 ing can be concluded about the global stabilityAof 0 us-
t?] %:3’ d_ 2,3( tTl)’ N 2,3(_ 72)' rk]) € two cases ing the functional(6). However, numerical evidence indi-
e time dependent parameteft) is given by cates that also in this casedf>c, thenA =0 is the global
attractor for Eq.(3).

71 71 71 71
Xt X, X, Xy
a(t)=2ucosT or o(t)=2u COST.
I1l. LOCAL STABILITY OF SYNCHRONOUS SOLUTIONS

4
. ) Numerical calculations show that the the synchronous so-
Although, the time dependence aft) could be quite com- |utions x, =x,=x3 could be locally stable for the values of
plicated its absolute value is always bounded hy. 2 the coupling constartt smaller tharc, which implies global
The trivial stationary solution of the scalar DDE),  stapility. The dynamics on this locally stable synchronization
A(t)=0, corresponds to the exactly synchronous solutionanifold could be low-dimensional chaotic, quasiperiodic,
x1(t) =xa(t) =x5(t) of Eq. (1). Global asymptotic stability or periodic. Furthermore, foc<c, there could be several
of A(t)=0 implies that the global attractor of El) satis-  coexisting local low-dimensional attractors that describe
fiesx;=x,=x3. To find a sufficient condition for the global various types of generalized synchronization. We shall con-

asymptotic stability ofA=0 it is useful (see for example centrate on the exact synchronization and the other types
Refs.[12,16]) to consider Eq(3) as a dynamical system on shall be just briefly mentioned.

the phase space given by continuous functidngefined on In order to describe quantitatively the local stability of the
the mtergal[— 7,0], where r=maxr;, 7}, with the norm  synchronous dynamics and the degree of synchronization for
[|A]|?=J° ,A%(6)d@. Solutions of Eq(3) for different ini-  c<c, we have numerically computed the largest transverse

tial functions inC[ — 7,0] generate a semiflow on this phase Lyapunov exponenil2] and the lag functiofi17]. The first
space given byA(#)=A(t—#6),teR*,60e[—7,0]. Thus quantity is defined using again the notB) in analogy with

the norm of an initial functiom\y evolves according to the Lyapunov exponent of finite dimensional systems. For
o o the manifoldx; = x5,
2_ 2 _ _
ladi= [ attodo= " ac-oge. @ 1 1Ay
Aio= lim ®)

Tt Al
The functional which we analyze is related to the norm - .

(5) and is given by

A(t)?
L(A)= (2) +bf

where the nornj|A; ,.d| is small, and analogously for,
0 =X3. The synchronization manifold is locally attracting for
A%(t—6)d#, (6) some €,u,71,7p) if both N, and\, ; are negative for at
7 least some sufficiently smal; .o andA 3.. For fixed val-

. . ' ues ofu, 7, and r, the value of the coupling when this
wherebis a parameter to be dete.rmlned..Forn(@}sldefmes happens is called th@ocal) exact synchronization threshold
a Lyapunov functional for Eq3) if there is a value of the [12].

parameterb such that Eq(6) is a decreasing function df
along the solutions of Eq3). In this case the stationary
solutionA=0 is globally asymptotically stable. The deriva-
tive of L along the solution of Eq(3) is given by

The existence of the stable synchronization could also be
detected by computation of some statistical property of typi-
cal orbits. One such parameter, which we have used, is the
rms deviation

L(t)=—(1+2c)A?—cAA™2+ o(t)A sin(A™/2)+bA2 (x—x))?)
—bAT=V(A,AT,AT2), (7) Kojij= RO (€)

The properties of the functional depend on the relation where( ) denotes the time average. If there is asymptotically
betweenr; and 7, via the lower boundary=maxr,n} of  stable exact synchronization, theg vanishes, and for the
the interval on which the initial functions must be given. nonsynchronized stateg, is finite. A more general quantity
This is reflected in the different properties of the functionsis derived from the lag function:

V(A,A™,A™) in the two cases. In the case< 7, the func-
tion V(A,A™,A™) has a single extremal point at (D= x(t=9)%)
(A,A™,A2)=(0,0,0) whereV(0,0,0)=0 . This extremum w(8)= (xiz(t)x]-z(t)) : (10
is necessarily a maximum ib=w/2 and for anyc>(u

—1)/2=cy. Thus, if c>cy the functional (6) where Then, an order parameter is defined by
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FIG. 2. The transverse Lyapunov expongptfor an orbit starting close td; ;=0. Parameters arg=3,7,=30 and(a) 7,=0, (b) 7,
=20, (c) =30, and(d) 7,=40.

Kmingi.j = Min{ i ()} (1) to qualitatively the same conclusiofiustrated in Fig. 7.
é We can summarize the numerical calculations with the fol-
lowing conclusions. Whem,=0, the local exact synchroni-

We shall denote by, and ki, the sets for all pairsi(j)  ation threshold i€y,~0.1 and is smaller than that for any
of quantities(9) and(11), respectively. The lag function and 7,#0. In the latter case and for+0r,<r,=30 the local

ﬂ;]e or_de:_ parame:]ermm Ct?nt deitectthnot onlyhthe_exta_\ct sg/n- exact synchronization threshodg, is cq;~0.3, and is much
chronization, such as, but aiso the synchronizalion be- o0 thancy. Locally attracting manifold of exact syn-

tweenx(t) andx;(t—¢£) for some time lag. If the dynam- chronization could coexist with other locally stable low-
ics is nonergodic with no global attractor these quantities

could depend on the initial functions. However if there iSdimensional attractors. One such attractor is illustrated in
locally stable synchronization manifold, it can be detected ir’:'g' 4.

numerical computations by almost vanishing values gf,, For 7, =7, the numerical evidence strongly supports the
for any sufficiently close initial conditions. conclusion that the only exactly synchronous state is the

Results of the numerical computation of either theStable stationary solutiom;=x,=x;=const=0. There are
Lyapunov coefficient or the rms deviation and the lag func-other stable low-dimensional manifolds that correspond to
tion lead to qualitatively and quantitatively the same conclumore general types of synchronizatipsee Figs. &,b].
sions. We fixed the pair of the intrinsic parametes4;) to ~ Consequentlyxo and ki are different, as is seen in Fig.
some typical values and studied the exponentsand\, 5  3(c). The functionA; ;(t) oscillates on such manifold of gen-
and the statistical quantities as functionsoofind r,, for  eralized synchronization, with the transversal Lyapunov co-
initial conditions in a small neighborhood df; ,.,.=A,3,  efficients A;, and N, 3 numerically equal to zerdFigs.
=0. A sample of our calculations, foru(r,)=(3,30), is 5(c,d)]. The dimension of the synchronization manifold
illustrated in Figs. 2—6. Computations for other values ofdrops down to zero asis increased. The symmetric station-
(m, 1) such that the single isolated unit is hyperchaotic leadary state becomes locally stable, and apparently also the glo-
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FIG. 4. Projection on X;,x;) of two coexisting low-
dimensional locally stable manifolds far,=30, 7,=28, andc
=0.5.

bal attractor, for quite large~0.925, which is close to the
estimated sufficient thresholch=(u—1)/2=1. For larger
values ofc, numerical computations for various initial func-
tions and different values af>c,, as large ax=20, al-
ways gave the symmetric stationary solution as the only at-
tractor. Thus, observed in the direction of decreasirthe
synchronization manifold undergoes two successive super-
critical Hopf bifurcations, and foc smaller than 0.2 the at-
tractor is multidimensional.

For not very bigr,> 7, the local exact synchronization is
possible. The threshold,, is again~0.3 and much smaller
thanc=cy.

Let us now briefly discuss the dynamics on the synchro-
nization manifold. As the coupling is increased beyond the
local synchronization threshold the dynamics could be cha-
otic, quasiperiodic, periodic and finally the manifold could
consist of the single stable stationary state. Various types of
dynamics are illustrated in Fig. 6. The numerical evidence
suggests that the dynamics on the synchronization manifold
is always chaotic for the coupling larger but close to the
local synchronization threshold. Furthermore, we have found
values of (,r;) and the corresponding>c, and 7, (see
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FIG. 5. Generalized synchronization fes= 7, (=30). Projection onX;,x,) of the synchronization manifoldg¢a) and (b)] and the
transverse Lyapunov coefficierft&) and(d)] for c=0.225[(a),(c)] andc=0.5[(b),(d)].

Fig. 7), such that the dynamics of the single unit is chaotic IV. SUMMARY AND PERSPECTIVES

and the manifold of the exact synchronization is globally

. . We have studied synchronization of three identical hyper-
stab!e. Thus, the numer.|cal evidence suggests that .the.d%aotic systems coupled by diffusive interaction. The hyper-
namics could be chaotic even when the synchronization

: : o . chaotic nature of the dynamics of each of the uncoupled
manifold is globally stable. Ag is increased the dynamics =~ . . T .
becomes regular. Generally, the sequence of bifurcations asun!ts is produced by an intrinsic .tlme delay, using as the
is increased leads to the ste;ble stationary solution as the syu["tS the lkeda mod.el,.and the t'm? .delﬁym the mfterac-
o : . Hlon between the units is taken explicitly. Mathematically the
chronization mamfold for some>c'ol, which depends on system is described by three delay-differential equations with
7. Even further increase af destabilizes the stationary so- yhe to different discrete time lags. We have given an ana-
lution and leads to a stable limit cycle, still within the syn- ytic estimate of the sufficient value of the coupling constant
chronization manifold. that implies exact synchronization, in the case when the in-
We have presented results of the numerical computationgraction delayr, is smaller than the intrinsic delay;,
for one particular pair of values of the parametess ;).  which is a plausible assumption in the case of hyperchaotic
However, qualitatively the same picture was obtained forunits. Local stability of the synchronization manifold is stud-
other values of &, ;) such that the single unit is hypercha- ied numerically, using the transverse Lyapunov exponents
otic. In particular, in Fig. 7, we illustrate the exact synchro-and the quantitiesc.,;, and o, which describe statistical
nization forc>c, [Fig. 7(c)], the chaotic dynamics on the correlations between the component systems. It is shown
synchronization manifoldFigs. 1a,b], and the only stable that, for any relation between, and 7, except forr,=7,,
type of generalized synchronization af=r;,c<c, [Fig. and for moderate values of the coupling constant, there could

7(d)] for the system with g, ;) =(5,50). be more than one locally stable low-dimensional manifolds,
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FIG. 6. lllustration of the possible dynamics on the locally stable exact synchronization manifold.
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FIG. 7. lllustration of the synchronization fat=5 and r;=50: (a) hyperchaotic time series,;(t), (b) projection of the attractor on
(xl,x?), (c) projection on &4,X5), (d) projection on &;,x,). In (8)—(c) c=2.01 andr,=20, and in(d) c=1.5 andr,= 7;=50.

which coexist with the manifold of the exact synchroniza-stable clusters with synchronized dynamics would become
tion. The type of synchronization depends on the initial con{possible. Another line of research would be to study the syn-
ditions. However, as the coupling constant is increased thehronization of hyperchaotic units with slightly different in-
only type of synchronization that occurs is the exact synchroternal parameters and coupling.

nization. The dynamics on the manifold of the exact synchro-
nization could be chaotic, even if the manifold is globally
attracting.

The work presented in this paper should be extended in
several directions. First, in order to test the model depen-
dence, instead of the Ikeda model one could use other delay- N.B. would like to thank Dr. H. Cerdeira from ICTP-
differential systems in the hyperchaotic regime. For exampleTrieste for very helpful discussions, and to acknowledge the
the MacKey-Glass equation apparently leads to similar consupport and warm hospitality of the condensed matter group
clusions. Second, larger chains with more than three unitat ICTP-Trieste. This work was partly supported by the Ser-
should be analyzed. Much more complex structure of locallybian Ministry of Science under Contract No. 1443.
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