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Synchronization of hyperchaotic systems with delayed bidirectional coupling
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Synchronization of three bidirectionally coupled hyperchaotic systems is studied, using the Ikeda model as
the hyperchaotic unit. The whole system is given by three delay-differential equations with two distinct time
lags. Sufficient condition for the global stability of the manifold of exact synchronization is found analytically.
Local stability of the synchronization manifold is studied by numerical computation of the transverse
Lyapunov exponent and statistical properties of the orbits.
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I. INTRODUCTION

Synchronization of chaotic systems is most often stud
for systems with relatively low dimensional chaotic attract
for example using the models of Rossler or Lorenz~an over-
view and an extensive list of references can be found in R
@1#!. It is of considerable interest to study the synchroni
tion between hyperchaotic systems, i.e., the systems wi
chaotic attractor, such that there are at least two posi
Lyapunov exponents for the restriction of the system on
attractor. Examples of such systems, for which the prob
of synchronization has been analyzed, are given by e
tronic circuits and networks of such elements~for example,
Refs. @2,3#!. Another class of hyperchaotic systems, whi
will be considered here, is provided by the semiflows gen
ated by delay-differential equations~DDEs!. As is well
known, a simple nonlinear scalar DDE with a single fix

time lag t, ẋ(t)5 f „x(t),x(t2t)…, gives an infinite dimen-
sional dynamical system on the phase spaceC(2t,0) of
continuous functions on the interval (2t,0) @4#. Large t
usually implies high-dimensional chaotic attractor@5–7#.

Besides the theoretical interest, as examples of hyper
otic systems, the models given by DDEs often appear
applications, for example in biology, nonlinear optics, or s
cure communication. Furthermore, such potentially hyp
chaotic units could appear as constitutive elements of c
plex systems, and can transmit excitations between them
biological, as well as physical, applications the transmiss
of excitations is certainly not instantaneous, and the rep
sentation by nonlocal and instantaneous interactions sh
be considered only as a very crude approximation. An
portant physical example is given by coupled lasers in
chaotic state with electro-optical or optical feedback@8,9#.
Thus, it is of some interest to study the collective behavio
systems composed of several chaotic units which are cou
by time-delayed interaction, and such that each unit if dec
pled from the system would have a hyperchaotic attrac
due to an intrinsic time lag.

Delayed coupled regular oscillators have been extensi
studied, for example, in relation to realistic neuronal n
works with synaptic delays@10#. Also, excitable systems
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with delayed coupling have been recently analyzed@11#.
Synchronization of two instantaneously coupled tim
delayed hyperchaotic systems in a master-slave configura
has been studied in Ref.@12#. Later, Shahverdievet al.
@13,14# applied the same methods to the same system
with the delayed coupling, and studied lag and anticipat
synchronization. We are not aware of any study of the
perchaotic systems with bidirectional delayed coupling.

We shall study the synchronization of three identic
Ikeda systems with bidirectional diffusive coupling. As
well known, the dimension of the attractor of a single Ike
system, ẋ(t)52x(t)1msin@x(t2t1)#, increases with the
time lagt1 . For a sufficiently larget1 andm the system is
hyperchaotic. In fact, the number of positive Lyapunov e
ponents increases witht1 , but the size of the exponents de
creases, so that the dimension of the attractor saturates.
character of chaos, in particular the number of posit
Lyapunov exponents and their values, for a single Ike
equation has been thoroughly studied@6,7,15#. An example
of the attractor, form53 andt1530, with at least two posi-
tive Lyapunov exponents is illustrated in Fig. 1. The who
system is given by

ẋi52xi1msin~xi
t1!1c~xi 21

t2 1xi 11
t2 22xi !,

i 51,2,3; x4[x1 , ~1!

wherexi
t j(t)[xi(t2t j ).

The system of DDE~1! has two different time lagst1 and
t2 , which makes its analysis more difficult than for the DD
with only one time lag. Furthermore, the two time lags a
pear in different ways and play quite different roles. The tim
lag t1 is an intrinsic ‘‘parameter’’ of each of the units an
controls the complexity of the dynamics of the uncoupl
unit. On the other hand, the time lagt2 measures the time
needed for the transfer of information between the units, a
contrary tot2 , appears linearly in Eqs.~1!. Since we are
predominantly interested in the system with highly chao
units, it would be natural to assume thatt1.t2.0.

We shall first prove that exact synchronizationx15x2
5x3 necessary occurs for a sufficiently large couplingc and
for any values of the time lagst1>t2>0; namely, for any
t1>t2>0 andc larger thanc0(m)5(m21)/2.0 ~and in-
dependent oft1 ,t2) the global attractor of the system~3!
©2003 The American Physical Society18-1
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FIG. 1. Illustration of the hy-
perchaotic attractor of the singl
Ikeda system (m53,t1530): ~a!
time seriesx1(t), ~b! projection
on x1 ,x1

t1, ~c! convergence of cal-
culations of two positive
Lyapunov exponents.
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satisfiesx15x25x3 . In the opposite caset1,t2 numerical
evidence indicates that a sufficiently largec also implies the
exact synchronization. Then, we discuss the local attrac
properties of the synchronization manifoldx15x25x3 . To
this end, we compare the information obtained by numer
computation of the statistical correlations along typical orb
and the transverse Lyapunov exponents. It turns out that,
for somec,c0 , the manifold of exact synchronization
locally stable but could coexist with other stable low
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dimensional attractors corresponding to more general ty
of synchronization. Naturally, no synchronization occurs
sufficiently small couplingc.

II. GLOBAL STABILITY OF THE EXACTLY
SYNCHRONOUS SOLUTIONS

In order to study the exact synchronization, we analy
the dynamics of the following two variables:
8-2
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D1,25x12x2 , D2,35x22x3 . ~2!

The dynamics of each of these two functions is given b
scalar DDE of the same form

Ḋ52~112c!D2cDt21s~ t !sin~Dt1/2!, ~3!

where D5D1,2,Dt15D1,2(t2t1),Dt25D1,2(t2t2) or D
5D2,3,Dt15D2,3(t2t1),Dt25D2,3(t2t2). In the two cases
the time dependent parameters(t) is given by

s~ t !52mcos
x1

t11x2
t1

2
or s~ t !52m cos

x2
t11x3

t1

2
.

~4!

Although, the time dependence ofs(t) could be quite com-
plicated its absolute value is always bounded by 2m.

The trivial stationary solution of the scalar DDE~3!,
D(t)50, corresponds to the exactly synchronous solut
x1(t)5x2(t)5x3(t) of Eq. ~1!. Global asymptotic stability
of D(t)50 implies that the global attractor of Eq.~1! satis-
fiesx15x25x3 . To find a sufficient condition for the globa
asymptotic stability ofD50 it is useful ~see for example
Refs.@12,16#! to consider Eq.~3! as a dynamical system o
the phase space given by continuous functionsD defined on
the interval @2t,0#, where t5max$t1,t2%, with the norm
uuDuu25*2t

0 D2(u)du. Solutions of Eq.~3! for different ini-
tial functions inC@2t,0# generate a semiflow on this pha
space given byD t(u)5D(t2u),tPR1,uP@2t,0#. Thus
the norm of an initial functionD0 evolves according to

uuD tuu25E
2t

0

D t
2~u!du5E

2t

0

D~ t2u!du. ~5!

The functional which we analyze is related to the no
~5! and is given by

L~D t!5
D~ t !2

2
1bE

2t

0

D2~ t2u!du, ~6!

whereb is a parameter to be determined. Formula~6! defines
a Lyapunov functional for Eq.~3! if there is a value of the
parameterb such that Eq.~6! is a decreasing function oft
along the solutions of Eq.~3!. In this case the stationar
solutionD50 is globally asymptotically stable. The deriva
tive of L along the solution of Eq.~3! is given by

L̇~ t !52~112c!D22cDDt21s~ t !D sin~Dt1/2!1bD2

2bDt[V~D,Dt1,Dt2!. ~7!

The properties of the functionalL depend on the relation
betweent1 andt2 via the lower boundaryt5max$t1,t2% of
the interval on which the initial functions must be give
This is reflected in the different properties of the functio
V(D,Dt1,Dt2) in the two cases. In the caset1,t2 the func-
tion V(D,Dt1,Dt2) has a single extremal point a
(D,Dt1,Dt2)5(0,0,0) whereV(0,0,0)50 . This extremum
is necessarily a maximum ifb5m/2 and for anyc.(m
21)/2[c0 . Thus, if c.c0 the functional ~6! where
06621
a

n

b5m/2 is the Lyapunov functional for Eq.~3! that proves the
global asymptotic stability of the zero stationary solution
Eq. ~3!. This means that the dynamics on the attractor of
~1! with t1.t2 is always synchronous provided th
c.c0 .

In the complementary caset2.t1 the corresponding
function V(D,Dt1,Dt2) has several local extrema and not
ing can be concluded about the global stability ofD50 us-
ing the functional~6!. However, numerical evidence ind
cates that also in this case ifc.c0 thenD50 is the global
attractor for Eq.~3!.

III. LOCAL STABILITY OF SYNCHRONOUS SOLUTIONS

Numerical calculations show that the the synchronous
lutions x15x25x3 could be locally stable for the values o
the coupling constantc smaller thanc0 which implies global
stability. The dynamics on this locally stable synchronizati
manifold could be low-dimensional chaotic, quasiperiod
or periodic. Furthermore, forc,c0 there could be severa
coexisting local low-dimensional attractors that descr
various types of generalized synchronization. We shall c
centrate on the exact synchronization and the other ty
shall be just briefly mentioned.

In order to describe quantitatively the local stability of th
synchronous dynamics and the degree of synchronization
c,c0 we have numerically computed the largest transve
Lyapunov exponent@12# and the lag function@17#. The first
quantity is defined using again the norm~5! in analogy with
the Lyapunov exponent of finite dimensional systems. F
the manifoldx15x2 ,

l1,25 lim
t2.`

1

t

uuD1,2;tuu
uuD1,2;0uu

, ~8!

where the normuuD1,2;0uu is small, and analogously forx2
5x3 . The synchronization manifold is locally attracting fo
some (c,m,t1 ,t2) if both l1,2 and l2,3 are negative for at
least some sufficiently smallD1,2;0 andD2,3;0. For fixed val-
ues ofm,t1 , andt2 the value of the couplingc when this
happens is called the~local! exact synchronization threshol
@12#.

The existence of the stable synchronization could also
detected by computation of some statistical property of ty
cal orbits. One such parameter, which we have used, is
rms deviation

k0;i , j5A ^~xi2xj !
2&

^xi
2~ t !xj

2~ t !&
, ~9!

where^ & denotes the time average. If there is asymptotica
stable exact synchronization, thenk0 vanishes, and for the
nonsynchronized statesk0 is finite. A more general quantity
is derived from the lag function:

k~j!5A^xi~ t !2xj~ t2j!2&

^xi
2~ t !xj

2~ t !&
. ~10!

Then, an order parameter is defined by
8-3



N. BURIĆ AND D. TODOROVIĆ PHYSICAL REVIEW E 68, 066218 ~2003!
FIG. 2. The transverse Lyapunov exponentln for an orbit starting close toD i , j50. Parameters arem53,t1530 and~a! t250, ~b! t2

520, ~c! t2530, and~d! t2540.
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kmin; i , j5min
j

$k i j ~j!%. ~11!

We shall denote byk0 andkmin the sets for all pairs (i , j )
of quantities~9! and~11!, respectively. The lag function an
the order parameterkmin can detect not only the exact syn
chronization, such ask0 but also the synchronization be
tweenxi(t) andxj (t2j) for some time lagj. If the dynam-
ics is nonergodic with no global attractor these quantit
could depend on the initial functions. However if there
locally stable synchronization manifold, it can be detected
numerical computations by almost vanishing values ofkmin ,
for any sufficiently close initial conditions.

Results of the numerical computation of either t
Lyapunov coefficient or the rms deviation and the lag fun
tion lead to qualitatively and quantitatively the same conc
sions. We fixed the pair of the intrinsic parameters (m,t1) to
some typical values and studied the exponentsl1,2 andl2,3
and the statistical quantities as functions ofc and t2 , for
initial conditions in a small neighborhood ofD1,2;05D2,3;0
50. A sample of our calculations, for (m,t1)5(3,30), is
illustrated in Figs. 2–6. Computations for other values
(m,t1) such that the single isolated unit is hyperchaotic le
06621
s

n

-
-

f
d

to qualitatively the same conclusions~illustrated in Fig. 7!.
We can summarize the numerical calculations with the f
lowing conclusions. Whent250, the local exact synchroni
zation threshold isc0,l'0.1 and is smaller than that for an
t2Þ0. In the latter case and for 0Þt2,t1530 the local
exact synchronization thresholdc0,l is c0,l'0.3, and is much
smaller thanc0 . Locally attracting manifold of exact syn
chronization could coexist with other locally stable low
dimensional attractors. One such attractor is illustrated
Fig. 4.

For t15t2 the numerical evidence strongly supports t
conclusion that the only exactly synchronous state is
stable stationary solutionx15x25x35constÞ0. There are
other stable low-dimensional manifolds that correspond
more general types of synchronization@see Figs. 5~a,b!#.
Consequently,k0 and kmin are different, as is seen in Fig
3~c!. The functionD i , j (t) oscillates on such manifold of gen
eralized synchronization, with the transversal Lyapunov
efficients l1,2 and l2,3 numerically equal to zero@Figs.
5~c,d!#. The dimension of the synchronization manifo
drops down to zero asc is increased. The symmetric station
ary state becomes locally stable, and apparently also the
8-4
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FIG. 3. Order parameterkmin for an orbit starting close toD i , j50. Parameters arem53,t1530 and~a! t250, ~b! t2520, ~c! t2

530 kmin ~triangles!, k0 ~squares!, and~d! t2540.
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FIG. 4. Projection on (x1 ,x2) of two coexisting low-

dimensional locally stable manifolds fort1530, t2528, andc
50.5.
06621
bal attractor, for quite largec'0.925, which is close to the
estimated sufficient thresholdc05(m21)/251. For larger
values ofc, numerical computations for various initial func
tions and different values ofc.c0 , as large asc520, al-
ways gave the symmetric stationary solution as the only
tractor. Thus, observed in the direction of decreasingc the
synchronization manifold undergoes two successive su
critical Hopf bifurcations, and forc smaller than 0.2 the at
tractor is multidimensional.

For not very bigt2.t1 the local exact synchronization i
possible. The thresholdc0,l is again'0.3 and much smaller
thanc5c0 .

Let us now briefly discuss the dynamics on the synch
nization manifold. As the couplingc is increased beyond th
local synchronization threshold the dynamics could be c
otic, quasiperiodic, periodic and finally the manifold cou
consist of the single stable stationary state. Various type
dynamics are illustrated in Fig. 6. The numerical eviden
suggests that the dynamics on the synchronization mani
is always chaotic for the couplingc larger but close to the
local synchronization threshold. Furthermore, we have fou
values of (m,t1) and the correspondingc.c0 and t2 ~see
8-5
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FIG. 5. Generalized synchronization fort25t1 (530). Projection on (x1 ,x2) of the synchronization manifolds@~a! and ~b!# and the
transverse Lyapunov coefficients@~c! and ~d!# for c50.225@~a!,~c!# andc50.5 @~b!,~d!#.
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Fig. 7!, such that the dynamics of the single unit is chao
and the manifold of the exact synchronization is globa
stable. Thus, the numerical evidence suggests that the
namics could be chaotic even when the synchroniza
manifold is globally stable. Asc is increased the dynamic
becomes regular. Generally, the sequence of bifurcationsc
is increased leads to the stable stationary solution as the
chronization manifold for somec.c0 , which depends on
t2 . Even further increase ofc destabilizes the stationary so
lution and leads to a stable limit cycle, still within the sy
chronization manifold.

We have presented results of the numerical computat
for one particular pair of values of the parameters (m,t1).
However, qualitatively the same picture was obtained
other values of (m,t1) such that the single unit is hyperch
otic. In particular, in Fig. 7, we illustrate the exact synchr
nization for c.c0 @Fig. 7~c!#, the chaotic dynamics on th
synchronization manifold@Figs. 7~a,b!#, and the only stable
type of generalized synchronization att25t1 ,c,c0 @Fig.
7~d!# for the system with (m,t1)5(5,50).
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IV. SUMMARY AND PERSPECTIVES

We have studied synchronization of three identical hyp
chaotic systems coupled by diffusive interaction. The hyp
chaotic nature of the dynamics of each of the uncoup
units is produced by an intrinsic time delayt1 , using as the
units the Ikeda model, and the time delayt2 in the interac-
tion between the units is taken explicitly. Mathematically t
system is described by three delay-differential equations w
the two different discrete time lags. We have given an a
lytic estimate of the sufficient value of the coupling consta
that implies exact synchronization, in the case when the
teraction delayt2 is smaller than the intrinsic delayt1 ,
which is a plausible assumption in the case of hypercha
units. Local stability of the synchronization manifold is stu
ied numerically, using the transverse Lyapunov expone
and the quantitieskmin and k0 , which describe statistica
correlations between the component systems. It is sho
that, for any relation betweent1 andt2 except fort15t2 ,
and for moderate values of the coupling constant, there co
be more than one locally stable low-dimensional manifol
8-6
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FIG. 6. Illustration of the possible dynamics on the locally stable exact synchronization manifold.
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FIG. 7. Illustration of the synchronization form55 andt1550: ~a! hyperchaotic time seriesx1(t), ~b! projection of the attractor on
(x1 ,x1

t1), ~c! projection on (x1 ,x2), ~d! projection on (x1 ,x2). In ~a!–~c! c52.01 andt2520, and in~d! c51.5 andt25t1550.
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which coexist with the manifold of the exact synchroniz
tion. The type of synchronization depends on the initial co
ditions. However, as the coupling constant is increased
only type of synchronization that occurs is the exact synch
nization. The dynamics on the manifold of the exact synch
nization could be chaotic, even if the manifold is globa
attracting.

The work presented in this paper should be extende
several directions. First, in order to test the model dep
dence, instead of the Ikeda model one could use other de
differential systems in the hyperchaotic regime. For exam
the MacKey-Glass equation apparently leads to similar c
clusions. Second, larger chains with more than three u
should be analyzed. Much more complex structure of loca
s

c
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stable clusters with synchronized dynamics would beco
possible. Another line of research would be to study the s
chronization of hyperchaotic units with slightly different in
ternal parameters and coupling.
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